Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Dec 10;251(23):7474-9.

Polymerization of Acanthamoeba actin. Kinetics, thermodynamics, and co-polymerization with muscle actin

  • PMID: 1002696
Free article

Polymerization of Acanthamoeba actin. Kinetics, thermodynamics, and co-polymerization with muscle actin

D J Gordon et al. J Biol Chem. .
Free article

Abstract

The kinetics and thermodynamics for the polymerization of purified Acanthamoeba actin were studied and compared to muscle actin. Polymerization was qualitatively similar for the two actins with a rate-limiting nucleation step followed by rapid polymer extension. Polymerization occurred only above a threshold critical concentration which varied with polymerization conditions for each actin. In the presence of 2 mM MgCl2, nucleation of both actins was rapid and their critical concentrations were similarly low and not detectably dependent on temperature. In 0.1 M KCl, the rates of nucleation of both actins were much slower than when Mg2+ was present and were significantly different from each other. Also, under these conditions, the critical concentrations of Acanthamoeba and muscle actin were significantly different and both varied markedly with temperature. These quantitative differences between the two actins could be attributed to differences in both their enthalpies and entropies of polymerization, Acanthamoeba actin having the more positive deltaH and delta S. Co-polymerization of the two actins was also demonstrated. Overall, however, there were no qualitative differences between Acanthamoeba and muscle actin that would suggest a unique role for the monomer-polymer equilibrium of cytoplasmic actin in cell motility.

PubMed Disclaimer

LinkOut - more resources