Hydrophobic interaction of human, mouse, and rabbit interferons with immobilized hydrocarbons
- PMID: 1002702
Hydrophobic interaction of human, mouse, and rabbit interferons with immobilized hydrocarbons
Abstract
Interferons of human, mouse, and rabbit origin bind to straight chain hydrocarbons immobilized on agarose. The hydrophobic nature of binding is established by the following observations: (a) a positive correlation between the length of hydrocarbon ligand and the strength of interaction; (b) a stronger interaction with hydrocarbon ligands terminated with apolar rather than polar head groups; (c) a lack of dependence of binding on ionic strength and pH of the solvent; (d) a reversal of binding by ethylene glycol, a hydrophobic solute; (e) an increasing eluting efficacy of tetraalkylammonium ions with the length of their alkyl substituents. The hydrophobic interactions of human interferon underlie the efficiency of two-step chromatographic procedures. For example, human embryo kidney interferon can be purified about 3,600-fold by sequential chromatography on (a) concanavalin A-agarose, (b) octyl-agarose. Another two-step procedure: (a) concanavalin A-agarose, (b) L-tryptophan-agarose, gives about 10,000-fold purification. The overall recovery of interferon in both cases in close to 90%.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
