Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Jan-Feb;25(1):7-21.
doi: 10.1080/019021499270394.

Clara cell secretory protein-deficient mice differ from wild-type mice in inflammatory chemokine expression to oxygen and ozone, but not to endotoxin

Affiliations
Free article
Comparative Study

Clara cell secretory protein-deficient mice differ from wild-type mice in inflammatory chemokine expression to oxygen and ozone, but not to endotoxin

C J Johnston et al. Exp Lung Res. 1999 Jan-Feb.
Free article

Abstract

The in vivo function of Clara cell secretory protein (CCSP) is unknown. Biologic and biochemical properties associated with CCSP have led to speculation that it participates in pulmonary inflammatory control. Our earlier studies have demonstrated that CCSP-deficient mice are more sensitive to either hyperoxia or ozone toxicity and show altered oxidant-induced pulmonary proinflammatory responses. In this study we test the hypothesis that altered chemokine responses seen in CCSP-/- mice following oxidant stress are a direct consequence of altered immunoregulation associated with CCSP deficiency. To test this hypothesis we utilized three distinct models of inducing pulmonary toxicity: hyperoxia and ozone (O3), which cause epithelial cell injury, and endotoxin, which causes pulmonary inflammation independent of direct epithelial cell injury. Wild-type (WT) or CCSP-/- strain 129 mice were exposed to O3 at 1.0 ppm for 24 hours, oxygen (O2) > 99% for 68 hours or inhalation of 0.0575 microgram endotoxin per mouse for 10 minutes and examined 6 hours postexposure. Mice displayed increased sensitivity to O3, as demonstrated by increased abundance of mRNAs encoding Eotaxin, macrophage inflammatory protein (MIP)-1 alpha, and MIP-2, after 4 hours of exposure, whereas WT mice were unaltered from controls. Increased sensitivity to hyperoxia was also observed, as demonstrated by increased abundance of mRNAs encoding Eotaxin, MIP-1 alpha, MIP-1 beta, MIP-2, and interferon-gamma inducible (IP)-10 after 68 hours of exposure, whereas WT mice were unaltered from controls. In contrast, WT and CCSP-/- mice responded identically 6 hours postinhalation of 0.0575 microgram lipopolysaccharide (LPS) per mouse. PMN response was 63% and 64% in WT and CCSP-/- mice, respectively. Messenger RNAs encoding Eotaxin, MIP-1 alpha, MIP-1 beta, MIP-2, IP-10, and MCP-1 were increased identically. We conclude that CCSP does not participate in regulation of the endotoxin-elicited pulmonary inflammatory response. Identical inflammatory and chemokine responses of CCSP-/- and WT mice in response to a nonepithelial toxic agent (endotoxin) suggest that altered inflammatory control observed between WT and CCSP-/- mice following O2 and O3 exposure is not the result of altered immunoregulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources