Analysis of the thermodynamic non-ideality of proteins by sedimentation equilibrium experiments
- PMID: 10028229
- DOI: 10.1016/s0301-4622(98)00212-9
Analysis of the thermodynamic non-ideality of proteins by sedimentation equilibrium experiments
Abstract
This paper presents a modified method to determine experimentally the second virial coefficient of protein solutions by sedimentation equilibrium experiments. The improvement is based on the possibility of fitting simultaneously up to seven radial concentration distribution curves of solutions with different loading concentrations. The possibility of precise determination of the second virial coefficient allows estimation of the net charge and the excluded volume of a monomeric protein. Application of the method is demonstrated for lysozyme and ovalbumin. In 0.1 M sodium acetate buffer, pH 4.5, the second virial coefficient of hen egg white lysozyme amounts to 24 +/- 1 ml/g. Analysis based on spherical particle theory yield an excluded volume of 3.5 ml/g and a charge dependent value of 20.5 ml/g which is induced by a net charge number of 14.1 +/- 1. Under low salt conditions self-association processes on lysozyme are unfavorable due to electrostatic repulsion. To overcome these repulsive contributions, either a shift to neutral pH or addition of at least 2% NaCl is necessary. In this way the charge dependent contribution decreases below the value responsible for the excluded volume and allows crystallization of the protein. Similar effects can be observed with ovalbumin. The high virial coefficient observed at pH 8.5 is induced by the high net charge number of 27 +/- 1.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
