Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Jan 15;43(2):245-59.
doi: 10.1016/s0360-3016(98)00341-1.

In vivo dosimetry during external photon beam radiotherapy

Affiliations
Review

In vivo dosimetry during external photon beam radiotherapy

M Essers et al. Int J Radiat Oncol Biol Phys. .

Abstract

In this critical review of the current practice of patient dose verification, we first demonstrate that a high accuracy (about 1-2%, 1 SD) can be obtained. Accurate in vivo dosimetry is possible if diodes and thermoluminescence dosimeters (TLDs), the main detector types in use for in vivo dosimetry, are carefully calibrated and the factors influencing their sensitivity are taken into account. Various methods and philosophies for applying patient dose verification are then evaluated: the measurement of each field for each fraction of each patient, a limited number of checks for all patients, or measurements of specific patient groups, for example, during total body irradiation (TBI) or conformal radiotherapy. The experience of a number of centers is then presented, providing information on the various types of errors detected by in vivo dosimetry, including their frequency and magnitude. From the results of recent studies it can be concluded that in centers having modern equipment with verification systems as well as comprehensive quality assurance (QA) programs, a systematic error larger than 5% in dose delivery is still present for 0.5-1% of the patient treatments. In other studies, a frequency of 3-10% of errors was observed for specific patient groups or when no verification system was present at the accelerator. These results were balanced against the additional manpower and other resources required for such a QA program. It could be concluded that patient dose verification should be an essential part of a QA program in a radiotherapy department, and plays a complementary role to treatment-sheet double checking. As the radiotherapy community makes the transition from the conventional two-dimensional (2D) to three-dimensional (3D) conformal and intensity modulated dose delivery, it is recommended that new treatment techniques be checked systematically for a few patients, and to perform in vivo dosimetry a few times for each patient for situations where errors in dose delivery should be minimized.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources