Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Dec 1;144(6):1581-95.
doi: 10.1084/jem.144.6.1581.

5'-Nucleotidase activity of mouse peritoneal macrophages. I. Synthesis and degradation in resident and inflammatory populations

5'-Nucleotidase activity of mouse peritoneal macrophages. I. Synthesis and degradation in resident and inflammatory populations

P J Edelson et al. J Exp Med. .

Abstract

Mouse resident peritoneal macrophages display sufficient 5'-nucleotidase activity to hydrolyze 58 nm AMP/min per cell protein. This activity increases approximately 163 nm AMP/min per mg after 72 h in culture. The enzyme is renewed in unstimulated cells with a half-time of 13.9 h. The activity is not reduced by treatment of intact cells with a variety of proteolytic enzymes, including trypsin, pronase, urokinase, and plasmin. Cells obtained from an inflammatory exudate have diminished or absent levels of enzyme activity. Endotoxin-elicited cells display enzyme activitiy of 20.9 nm AMP/min per mg, while thioglycollate-stimulated macrophages have no detectable activity. The reduced level of activity in endotoxin-stimulated cells is due to their elevated rate of enzyme degradation, with a half-time of 6.9 h. Their rate of enzyme synthesis is essentially normal. No evidence for latent enzyme activity could be obtained in thioglycollate-stimulated cells, nor do these cells produce any inhibition of normal cell enzyme activity. Serum deprivation reduces the enzyme activity of resident cells to about 45% of control activity. These conditions do not significantly affect the rate of enzyme synthesis, but again are explainable by an increase in the rate of enzyme degradation. Pinocytic rate is elevated in endotoxin-stimulated cells which show a more rapid rate of enzyme degradation than unstimulated cells do. However, in serum-free conditions, the rate of enzyme degradation is doubled with no change in the pinocytic rate of the cells.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
    1. J Exp Med. 1976 Dec 1;144(6):1596-608 - PubMed
    1. Adv Enzymol Relat Areas Mol Biol. 1973;37:135-87 - PubMed
    1. Mol Pharmacol. 1965 Sep;1(2):149-56 - PubMed
    1. J Exp Med. 1968 Nov 1;128(5):991-1009 - PubMed

Publication types