Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1976 Dec;5(6):669-76.
doi: 10.1007/BF01181580.

Prenatal development of Bergmann glial fibres in rodent cerebellum

Comparative Study

Prenatal development of Bergmann glial fibres in rodent cerebellum

M Del Cerro et al. J Neurocytol. 1976 Dec.

Abstract

The external granular and molecular layers in the foetal cerebellar cortex of mice and rats were examined by electron microscopy for the presence of Bergmann glial fibres. Morphologically distinct Bergmann fibres were observed at embryonic day E 15 in the mouse and at E 17 in the rat. Even at prenatal stages of development these fibres have a considerable degree of cytological differentiation which permits their identification as glial elements. The glial fibres contain numerous microfilaments, some smooth endoplasmic reticulum, a few mitochondria and scant free ribosomes. They penetrate the molecular and external granular layers radially and terminate with endfeet at the cerebellar surface. The proliferative cells of the external granular layer possess cytoplasmic processes which are oriented randomly, do not have endfeet, and are morphologically distinct from the Bergmann fibres with which they intermingle. In conclusion, immature Bergmann glial cells are present well before birth in the rodent cerebellum.

PubMed Disclaimer

Publication types