Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar 5;274(10):6154-60.
doi: 10.1074/jbc.274.10.6154.

Sequence differences between alpha1C and alpha1S Ca2+ channel subunits reveal structural determinants of a guarded and modulated benzothiazepine receptor

Affiliations
Free article

Sequence differences between alpha1C and alpha1S Ca2+ channel subunits reveal structural determinants of a guarded and modulated benzothiazepine receptor

S Berjukow et al. J Biol Chem. .
Free article

Abstract

The molecular basis of the Ca2+ channel block by (+)-cis-diltiazem was studied in class A/L-type chimeras and mutant alpha1C-a Ca2+ channels. Chimeras consisted of either rabbit heart (alpha1C-a) or carp skeletal muscle (alpha1S) sequence in transmembrane segments IIIS6, IVS6, and adjacent S5-S6 linkers. Only chimeras containing sequences from alpha1C-a were efficiently blocked by (+)-cis-diltiazem, whereas the phenylalkylamine (-)-gallopamil efficiently blocked both constructs. Carp skeletal muscle and rabbit heart Ca2+ channel alpha1 subunits differ with respect to two nonconserved amino acids in segments IVS6. Transfer of a single leucine (Leu1383, located at the extracellular mouth of the pore) from IVS6 alpha1C-a to IVS6 of alpha1S significantly increased the (+)-cis-diltiazem sensitivity of the corresponding mutant L1383I. An analysis of the role of the two heterologous amino acids in a L-type alpha1 subunit revealed that corresponding amino acids in position 1487 (outer channel mouth) determine recovery of resting Ca2+ channels from block by (+)-cis-diltiazem. The second heterologous amino acid in position 1504 of segment IVS6 (inner channel mouth) was identified as crucial inactivation determinant of L-type Ca2+ channels. This residue simultaneously modulates drug binding during membrane depolarization. Our study provides the first evidence for a guarded and modulated benzothiazepine receptor on L-type channels.

PubMed Disclaimer

Publication types

LinkOut - more resources