Depolarization-evoked Ca2+ release in a non-excitable cell, the rat megakaryocyte
- PMID: 10050006
- PMCID: PMC2269158
- DOI: 10.1111/j.1469-7793.1999.385ac.x
Depolarization-evoked Ca2+ release in a non-excitable cell, the rat megakaryocyte
Abstract
1. The effect of membrane potential on [Ca2+]i in rat megakaryocytes was studied using simultaneous whole-cell patch clamp and fura-2 fluorescence recordings. 2. Depolarization from -75 to 0 mV had no effect on [Ca2+]i in unstimulated cells, but evoked one or more spikes of Ca2+ increase (peak increase: 714 +/- 95 nM) during activation of metabotropic purinoceptors by 1 microM ADP. 3. The depolarization-evoked Ca2+ increase was present in Ca2+-free medium and also following removal of Na+. Thus depolarization mobilizes Ca2+ from an intracellular store without a requirement for altered Na+-Ca2+ exchange activity. 4. Intracellular dialysis with heparin blocked the depolarization-evoked Ca2+ increase, indicating a role for functional IP3 receptors. 5. Under current clamp, ADP caused the membrane potential to fluctuate between -43 +/- 1 and -76 +/- 1 mV. Under voltage clamp, depolarization from -75 to -45 mV evoked a transient [Ca2+]i increase (398 +/- 91 nM) during exposure to ADP. 6. We conclude that during stimulation of metabotropic purinoceptors, membrane depolarization over the physiological range can stimulate Ca2+ release from intracellular stores in the rat megakaryocyte, a non-excitable cell type. This may represent an important mechanism by which electrogenic influences can control patterns of [Ca2+]i increase.
Figures
References
-
- Bezprozvanny I, Ehrlich BE. The inositol 1,4,5-trisphosphate (InsP3) receptor. Journal of Membrane Biology. 1995;145:205–216. - PubMed
-
- Clapham DE. Calcium signaling. Cell. 1995;80:259–268. - PubMed
-
- Fasolato C, Innocenti B, Pozzan T. Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends in Pharmacological Sciences. 1994;15:77–83. 10.1016/0165-6147(94)90282-8. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous