Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Feb;15(1):21-34.

Cellular structure and biology of Dupuytren's disease

Affiliations
  • PMID: 10050239
Review

Cellular structure and biology of Dupuytren's disease

J J Tomasek et al. Hand Clin. 1999 Feb.

Abstract

Numerous studies support the idea that the myofibroblast is a key cell responsible for the tissue contraction in Dupuytren's disease. In vitro models have been developed to study the underlying cellular basis of myofibroblast differentiation and contraction. Studies suggest that the growth factor TGF-beta 1 combined with mechanical stress can promote the differentiation of fibroblasts into myofibroblasts. Agonists, such as LPA and thrombin, can promote the contraction of myofibroblasts through specific intracellular signaling pathways that regulate levels of phosphorylated myosin light chain. Agents that can affect these intracellular signaling pathways hold promise as a means to decrease contraction of the myofibroblast and of the palmar fascia in Dupuytren's disease. Finally, the recent finding that IFN-gamma can suppress both the differentiation of the myofibroblast and the generation of contractile force, together with preliminary clinical results using IFN-gamma, suggest the potential use of IFN-gamma for nonsurgical therapy of Dupuytren's disease. Future studies into the cellular basis of tissue contraction should provide alternative methods to improve management of Dupuytren's contracture.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources