Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb 12;444(2-3):211-6.
doi: 10.1016/s0014-5793(99)00062-9.

Kinetics of transhydrogenase reaction catalyzed by the mitochondrial NADH-ubiquinone oxidoreductase (Complex I) imply more than one catalytic nucleotide-binding sites

Affiliations
Free article

Kinetics of transhydrogenase reaction catalyzed by the mitochondrial NADH-ubiquinone oxidoreductase (Complex I) imply more than one catalytic nucleotide-binding sites

N V Zakharova et al. FEBS Lett. .
Free article

Abstract

The steady-state kinetics of the transhydrogenase reaction (the reduction of acetylpyridine adenine dinucleotide (APAD+) by NADH, DD transhydrogenase) catalyzed by bovine heart submitochondrial particles (SMP), purified Complex I, and by the soluble three-subunit NADH dehydrogenase (FP) were studied to assess a number of the Complex I-associated nucleotide-binding sites. Under the conditions where the proton-pumping transhydrogenase (EC 1.6.1.1) was not operating, the DD transhydrogenase activities of SMP and Complex I exhibited complex kinetic pattern: the double reciprocal plots of the velocities were not linear when the substrate concentrations were varied in a wide range. No binary complex (ping-pong) mechanism (as expected for a single substrate-binding site enzyme) was operating within any range of the variable substrates. ADP-ribose, a competitive inhibitor of NADH oxidase, was shown to compete more effectively with NADH (Ki = 40 microM) than with APAD+ (Ki = 150 microM) in the transhydrogenase reaction. FMN redox cycling-dependent, FP catalyzed DD transhydrogenase reaction was shown to proceed through a ternary complex mechanism. The results suggest that Complex I and the simplest catalytically competent fragment derived therefrom (FP) possess more than one nucleotide-binding sites operating in the transhydrogenase reaction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources