Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan;32(1):63-70.
doi: 10.1016/s0021-9290(98)00143-2.

Articulated external fixation of the ankle: minimizing motion resistance by accurate axis alignment

Affiliations

Articulated external fixation of the ankle: minimizing motion resistance by accurate axis alignment

M Bottlang et al. J Biomech. 1999 Jan.

Abstract

This study describes how an optimal single hinge axis position can be established for the application of articulated external fixation to the ankle joint. By deliberately introducing various amounts of relative mal-alignment between the optimal talocrural joint axis and the actual fixator hinge axis, it was possible to measure the corresponding amounts of additional resistance to joint motion. In a cadaveric study of six ankle specimens, we determined the instant axis of rotation of the talocrural joint from 3-D kinematic data. acquired by an electromagnetic motion tracking system. For each specimen, an optimal fixator hinge position was calculated from these motion data. Compared to the intact natural joint, aligning the fixator along the optimized axis position caused a moderate increase in energy (0.14 J) needed to rotate the ankle through a prescribed plantar/dorsiflexion range. However, malpositioning the hinge by 10 mm caused more than five times that amount of increase in motion resistance. While articulated external fixation with limited internal fixation can establish a favorable environment for the repair of severe injuries such as tibial pilon fractures, the large additional resistance to motion accompanying a malpositioned fixator axis suggests the development of untoward intra-articular forces that could act to disturb fragment alignment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources