Synchronization induced by temporal delays in pulse-coupled oscillators
- PMID: 10059062
- DOI: 10.1103/PhysRevLett.74.1570
Synchronization induced by temporal delays in pulse-coupled oscillators
Similar articles
-
Impulsive synchronization of coupled dynamical networks with nonidentical Duffing oscillators and coupling delays.Chaos. 2012 Mar;22(1):013140. doi: 10.1063/1.3692971. Chaos. 2012. PMID: 22463016
-
Robust convergence in pulse-coupled oscillators with delays.Phys Rev Lett. 2011 May 13;106(19):194101. doi: 10.1103/PhysRevLett.106.194101. Epub 2011 May 11. Phys Rev Lett. 2011. PMID: 21668162
-
Synchronization of an ensemble of oscillators regulated by their spatial movement.Chaos. 2010 Dec;20(4):043108. doi: 10.1063/1.3496399. Chaos. 2010. PMID: 21198078
-
Effect of node-degree correlation on synchronization of identical pulse-coupled oscillators.Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046206. doi: 10.1103/PhysRevE.81.046206. Epub 2010 Apr 12. Phys Rev E Stat Nonlin Soft Matter Phys. 2010. PMID: 20481806
-
Delays and weakly coupled neuronal oscillators.Philos Trans A Math Phys Eng Sci. 2009 Mar 28;367(1891):1097-115. doi: 10.1098/rsta.2008.0259. Philos Trans A Math Phys Eng Sci. 2009. PMID: 19218153 Review.
Cited by
-
Delay-Induced Multistability and Loop Formation in Neuronal Networks with Spike-Timing-Dependent Plasticity.Sci Rep. 2018 Aug 13;8(1):12068. doi: 10.1038/s41598-018-30565-9. Sci Rep. 2018. PMID: 30104713 Free PMC article.
-
Inhibitory interneuron circuits at cortical and spinal levels are associated with individual differences in corticomuscular coherence during isometric voluntary contraction.Sci Rep. 2017 Mar 14;7:44417. doi: 10.1038/srep44417. Sci Rep. 2017. PMID: 28290507 Free PMC article.
-
Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience.J Math Neurosci. 2016 Dec;6(1):2. doi: 10.1186/s13408-015-0033-6. Epub 2016 Jan 6. J Math Neurosci. 2016. PMID: 26739133 Free PMC article.
-
Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling.Phys Rev E. 2017 Mar;95(3-1):032215. doi: 10.1103/PhysRevE.95.032215. Epub 2017 Mar 16. Phys Rev E. 2017. PMID: 28415236 Free PMC article.
-
Phase response theory explains cluster formation in sparsely but strongly connected inhibitory neural networks and effects of jitter due to sparse connectivity.J Neurophysiol. 2019 Apr 1;121(4):1125-1142. doi: 10.1152/jn.00728.2018. Epub 2019 Feb 6. J Neurophysiol. 2019. PMID: 30726155 Free PMC article.
LinkOut - more resources
Full Text Sources