Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb;42(2):167-76.
doi: 10.1007/s001250051135.

Alterations in platelet Ca2+ signalling in diabetic patients is due to increased formation of superoxide anions and reduced nitric oxide production

Affiliations

Alterations in platelet Ca2+ signalling in diabetic patients is due to increased formation of superoxide anions and reduced nitric oxide production

G Schaeffer et al. Diabetologia. 1999 Feb.

Abstract

Increased aggregation of platelets might contribute to the development of vascular complication in diabetes mellitus. In this study release of superoxide anions, intracellular Ca2+ signalling and nitric oxide formation stimulated by the receptor-dependent agonist adenosine 5 '-diphosphate (ADP) and the receptor-independent stimulus thapsigargin, were compared in platelets isolated from patients with Type II (non-insulin-dependent) diabetes mellitus and healthy control subjects. Diabetes augmented intracellular Ca2+ release and Ca2+ entry to ADP by 40 and 44% (control subjects: n = 11; diabetic: n = 6), while the median effective concentration (EC50) of ADP to initiate Ca2+ signalling was similar in both groups. The effect of thapsigargin on Ca2+ concentration was increased by 69% in diabetic patients (control subjects: n = 22; diabetic patients: n = 9). In addition, release of superoxide anions was 70% greater in diabetic patients (control subjects: n = 9; diabetic patients: n = 6). Treatment of platelets from control subjects with the superoxide anion-generating mixture xanthine oxidase and hypoxanthine or buthioninesulphoximine (BSO) mimicked the effect of diabetes on platelet Ca2+ signalling. The antioxidant glutathione normalized enhanced Ca2+ response in the diabetic group (control subjects: n = 5: diabetic patients: n = 6). Basal and thapsigargin-evoked nitric oxide synthase activity was reduced in the diabetic group by 85 and 64%, respectively (control subjects: n = 13; diabetic subjects: n = 13). The nitric oxide-donor 2-(N,N-diethylamino)-diazenolate-2-oxide sodium (DEA/NO) normalized enhanced Ca2+ signalling in platelets preincubated with xanthine oxidase and hypoxanthine (n = 12) and in those from diabetics (control subjects: n = 6; diabetic patients: n = 6). Inhibition of nitric oxide synthase by N-nitro-L-arginine (L-NA) augmented thapsigargin-induced Ca2+ signalling by 51% (n = 8). These data indicate that in diabetes platelet Ca2+ signalling might be enhanced by excessive superoxide production and an attenuated negative direct or indirect feedback control by nitric oxide, due to its reduced production.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources