Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar 12;274(11):7545-56.
doi: 10.1074/jbc.274.11.7545.

Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway

Affiliations
Free article

Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway

O P Barry et al. J Biol Chem. .
Free article

Abstract

Activation of platelets results in shedding of membrane microparticles (MP) with potentially bioactive properties. Platelet MP modulate platelet, monocyte, and vascular endothelial cell function, both by direct effects of MP arachidonic acid (AA) and by its metabolism to bioactive prostanoids. We have previously reported that platelet MP induce expression of cyclooxygenase (COX)-2 and prostacyclin production in monocytes and endothelial cells. To elucidate further the molecular mechanisms that underlie MP-induced up-regulation of COX-2 expression, we investigated the response of a human monocytoid (U-937) cell line to platelet MP stimulation. In U-937 cells, MP-induced COX-2 expression and eicosanoid formation is prevented by pharmacological inhibitors of protein kinase C (PKC), PI 3-kinase, mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase, and p38 kinase. Treatment with the PI 3-kinase inhibitors wortmannin and LY294002 also blocked MP-induced p42/p44 MAPK, p38, and JNK1 phosphorylation. Conversely, platelet MP stimulation of U-937 cells results in direct activation of PKC, p42/p44 MAPK, p38 kinase, and c-Jun N-terminal kinase (JNK) as well as activation of the transcription factors c-Jun and Elk-1. However, MP failed to activate the cAMP response element. Activation of U-937 cells by MP induces translocation of classical (PKCbeta), novel (PKCdelta) and atypical (PKCzeta and PKClambda) isozymes of PKC from the cytosol to the membrane, with concomitant activation of downstream MAPK. While MP-induced activation of p42/p44 MAPK and p38 kinase is transient, a sustained activation of JNK1 was observed. Although PKC activation is required for MP-induced p42/p44 MAPK, activation of the stress kinases p38 and JNK1 was PKC-independent. The fatty acid fraction of the MP accounted for these effects, which were mimicked by MP AA. Rather than acting directly via nuclear receptors, MP AA activates COX-2-dependent prostaglandin production by a PKC/p42/p44 MAPK/p38 kinase-sensitive pathway in which PI 3-kinase plays a significant role. MP AA also stimulates transcriptional activation of COX-2 as well as c-Jun and Elk-1.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources