Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb;261(1):142-51.
doi: 10.1007/s004380050951.

Mutations in the predicted aspartyl tRNA synthetase of Drosophila are lethal and function as dosage-sensitive maternal modifiers of the sex determination gene Sex-lethal

Affiliations

Mutations in the predicted aspartyl tRNA synthetase of Drosophila are lethal and function as dosage-sensitive maternal modifiers of the sex determination gene Sex-lethal

S M Stitzinger et al. Mol Gen Genet. 1999 Feb.

Abstract

Stable activation of the Drosophila sex determination gene Sex-lethal in the female embryo is a multistep process. Early in embryogenesis Sex-lethal is regulated at the level of transcription, and then later in embryogenesis Sex-lethal regulation switches to an autoregulatory RNA splicing mechanism. Previous studies have shown that successful activation of Sxl requires both maternally and zygotically provided gene products, many of which are essential for viability and have other, non-sex specific functions. Using a screen for dosage-sensitive modifiers we identified a new maternally expressed gene, l(2)49Db, as a likely participant in Sxl activation. We show that the establishment of the Sxl autoregulatory splicing loop, but not the earlier steps in Sxl activation, is sensitive to the maternal dosage of l(2)49Db. We further demonstrate that l(2)49Db encodes an aspartyl tRNA synthetase. Finally we present evidence that this effect is indirect, by demonstrating that mutations in tryptophanyl tRNA synthetase are also dosage-sensitive maternal modifiers of Sex-lethal. These data suggest that stable activation of Sex-lethal in the embryo may be particularly sensitive to perturbation of the translational machinery.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources