Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1999 Mar;45(3):337-43.
doi: 10.1002/1531-8249(199903)45:3<337::aid-ana9>3.0.co;2-u.

Abnormal fatty acid metabolism in childhood spinal muscular atrophy

Affiliations
Clinical Trial

Abnormal fatty acid metabolism in childhood spinal muscular atrophy

T O Crawford et al. Ann Neurol. 1999 Mar.

Abstract

Our previous experience with abnormal fatty acid metabolism in several children with spinal muscular atrophy (SMA) prompted evaluation of fatty acid metabolism in a larger cohort. Thirty-three infants with severe infantile SMA were shown to have a significantly increased ratio of dodecanoic to tetradecanoic acid in plasma compared with normal infants and 6 infants affected with equally debilitating, non-SMA denervating disorders. Seventeen children with milder forms of SMA had normal fatty acid profiles. In addition, all 5 infants with severe SMA evaluated in a fasting state developed a distinctive and marked dicarboxylic aciduria, including saturated, unsaturated, and 3-hydroxy forms, comparable in severity with the dicarboxylic aciduria of children with primary defects of mitochondrial fatty acid beta-oxidation. Nine children with chronic SMA and 23 control patients did not develop an abnormal dicarboxylic aciduria during fasting. No known disorder of fatty acid metabolism explains all of the abnormalities we find in SMA. Our data suggest, however, that the abnormalities are not a consequence of SMA-related immobility, systemic illness, muscle denervation, or muscle atrophy. These abnormalities in fatty acid metabolism may be caused by changes in cellular physiology related to the molecular defects of the SMA-pathogenic survival motor neuron gene or neighboring genes.

PubMed Disclaimer

Publication types

LinkOut - more resources