Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar;19(3):656-64.
doi: 10.1161/01.atv.19.3.656.

Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells

Affiliations

Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells

S Dimmeler et al. Arterioscler Thromb Vasc Biol. 1999 Mar.

Abstract

Physiological levels of laminar shear stress completely abrogate apoptosis of human endothelial cells in response to a variety of stimuli and might therefore importantly contribute to endothelial integrity. We show here that the apoptosis-suppressive effects of shear stress are mediated by upregulation of Cu/Zn SOD and NO synthase. Shear stress-mediated inhibition of endothelial cell apoptosis in response to exogenous oxygen radicals, oxidized LDL, and tumor necrosis factor-alpha was associated with complete inhibition of caspase-3-like activity, the central effector arm executing the apoptotic cell death program in endothelial cells. Shear stress-dependent upregulation of Cu/Zn SOD and NO synthase blocks activation of the caspase cascade in response to apoptosis-inducing stimuli. These findings establish the upregulation of Cu/Zn SOD and NO synthase by shear stress as a central protective cellular mechanism to preserve the integrity of the endothelium after proapoptotic stimulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources