Construction and analysis of hybrid Escherichia coli-Bacillus subtilis dnaK genes
- PMID: 10074100
- PMCID: PMC93606
- DOI: 10.1128/JB.181.6.1971-1974.1999
Construction and analysis of hybrid Escherichia coli-Bacillus subtilis dnaK genes
Abstract
The highly conserved DnaK chaperones consist of an N-terminal ATPase domain, a central substrate-binding domain, and a C-terminal domain whose function is not known. Since Bacillus subtilis dnaK was not able to complement an Escherichia coli dnaK null mutant, we performed domain element swap experiments to identify the regions responsible for this finding. It turned out that the B. subtilis DnaK protein needed approximately normal amounts of the cochaperone DnaJ to be functional in E. coli. The ATPase domain and the substrate-binding domain form a species-specific functional unit, while the C-terminal domains, although less conserved, are exchangeable. Deletion of the C-terminal domain in E. coli DnaK affected neither complementation of growth at high temperatures nor propagation of phage lambda but abolished degradation of sigma32.
Figures



Similar articles
-
Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32.J Bacteriol. 1999 Jun;181(11):3552-61. doi: 10.1128/JB.181.11.3552-3561.1999. J Bacteriol. 1999. PMID: 10348869 Free PMC article.
-
A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein.J Biol Chem. 1996 May 10;271(19):11236-46. doi: 10.1074/jbc.271.19.11236. J Biol Chem. 1996. PMID: 8626673
-
Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy.J Mol Biol. 1999 Jun 18;289(4):1131-44. doi: 10.1006/jmbi.1999.2844. J Mol Biol. 1999. PMID: 10369787
-
Microbial molecular chaperones.Adv Microb Physiol. 2001;44:93-140. doi: 10.1016/s0065-2911(01)44012-4. Adv Microb Physiol. 2001. PMID: 11407116 Review.
-
The Escherichia coli chaperones involved in DNA replication.Philos Trans R Soc Lond B Biol Sci. 1993 Mar 29;339(1289):271-7; discussion 277-8. doi: 10.1098/rstb.1993.0025. Philos Trans R Soc Lond B Biol Sci. 1993. PMID: 8098531 Review.
Cited by
-
Rhizobial 16S rRNA and dnaK genes: mosaicism and the uncertain phylogenetic placement of Rhizobium galegae.Appl Environ Microbiol. 2005 Mar;71(3):1328-35. doi: 10.1128/AEM.71.3.1328-1335.2005. Appl Environ Microbiol. 2005. PMID: 15746335 Free PMC article.
-
Complementation of an Escherichia coli DnaK defect by Hsc70-DnaK chimeric proteins.J Bacteriol. 2004 Sep;186(18):6248-53. doi: 10.1128/JB.186.18.6248-6253.2004. J Bacteriol. 2004. PMID: 15342595 Free PMC article.
-
Optimizing Chaperone Removal Strategy from Overexpressed Recombinant Proteins : GNE, a Case Study.Methods Mol Biol. 2022;2406:339-358. doi: 10.1007/978-1-0716-1859-2_20. Methods Mol Biol. 2022. PMID: 35089567
-
Cold-active DnaK of an Antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures.Extremophiles. 2005 Apr;9(2):145-50. doi: 10.1007/s00792-004-0429-9. Epub 2004 Dec 15. Extremophiles. 2005. PMID: 15599780
-
Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity.Cell Stress Chaperones. 2012 Jan;17(1):41-55. doi: 10.1007/s12192-011-0284-4. Epub 2011 Aug 6. Cell Stress Chaperones. 2012. PMID: 21822788 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases