Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar 11;9(5):257-60.
doi: 10.1016/s0960-9822(99)80114-6.

Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis

Affiliations
Free article

Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis

Y Vallis et al. Curr Biol. .
Free article

Abstract

The GTPase dynamin plays an essential role in clathrin-mediated endocytosis [1] [2] [3]. Substantial evidence suggests that dynamin oligomerisation around the necks of endocytosing vesicles and subsequent dynamin-catalysed GTP hydrolysis is responsible for membrane fission [4] [5]. The pleckstrin homology (PH) domain of dynamin has previously been shown to interact with phosphoinositides, but it has not been determined whether this interaction is essential for dynamin's function in endocytosis [6] [7] [8] [9]. In this study, we address the in vivo function of the PH domain of dynamin by assaying the effects of deletions and point mutations in this region on transferrin uptake in COS-7 fibroblasts. Overexpression of a dynamin construct lacking its entire PH domain potently blocked transferrin uptake, as did overexpression of a dynamin construct containing a mutation in the first variable loop of the PH domain. Structural modelling of this latter mutant suggested that the lysine residue at position 535 (Lys535) may be critical in the coordination of phosphoinositides, and indeed, the purified mutant no longer interacted with lipid nanotubes. Interestingly, the inhibitory phenotype of cells expressing this dynamin mutant was partially relieved by a second mutation in the carboxy-terminal proline-rich domain (PRD), one that prevents dynamin from binding to the Src homology 3 (SH3) domain of amphiphysin. These data demonstrate that dynamin's interaction with phosphoinositides through its PH domain is essential for endocytosis. These findings also support our hypothesis that PRD-SH3 domain interactions are important in the recruitment of dynamin to sites of endocytosis.

PubMed Disclaimer

LinkOut - more resources