Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998:119:285-310.
doi: 10.1016/s0079-6123(08)61576-9.

Effects of vasopressin and related peptides on neurons of the rat lateral septum and ventral hippocampus

Affiliations
Review

Effects of vasopressin and related peptides on neurons of the rat lateral septum and ventral hippocampus

I J Urban. Prog Brain Res. 1998.

Abstract

The effects of vasopressin (VP), VP fragments and propressophysin glycopeptide on neuronal activities in the septum-hippocampus complex of rats were studied in vitro and in vivo. The frequency of the hippocampus theta rhythm in Brattleboro rats homozygous for diabetes insipidus was significantly slower than that of heterozygous litter mates and normal rats. Intracerebroventricular micro-injection of des-glycine-amide vasopressin corrected for several hours the frequency deficit of the theta rhythm in the homozygous Brattleboro rats and the centrally administered VP slowed down theta rhythm in normal rats. Microinotophoretically administered VP excited single neurons in the lateral septum of ventral hippocampus, and/or facilitated the responses of these neurons to glutamate and to stimulation of the glutamatergic afferent fibers in the fimbria bundle. The excitatory effects of VP vanished within seconds after termination of the peptide administration, however, the peptide-induced enhancement of glutamate and syntatically induced excitations were sustained for up to 60 min after the peptide administration. In vitro, pM concentrations of VP, VP 4-8 and C-terminus glycopeptide of propresophysin facilitated for 30-60 min the glutamate-mediated EPSPs in neurons of the lateral septum or the ventral hippocampus. The EPSPs increase in the lateral septum neurons was not prevented by pretreatment with antagonist of the V1a type of the vasopressin receptor. The resting membrane potential and input resistance were not affected by the peptides. A low-frequency electrical stimulation in the diagonal Band of Broca or in the Bed nucleus of the stria terminals, sources of the vasopressinergic innervation of the septum, facilitated the negative wave of the filed potentials responses evoked in the lateral septum by stimulating the fimbria bundle fibers in control Long-Evans and Brattleboro rats heterozygous for diabetes insipidus. The field potential increase was sustained for several hours after the stimulation, and it was not occluded by long-term potentiation elicited by high frequency stimulation of the fimbria bundle afferent fibers. Brattleboro rats homozygous for diabetes insipidus failed to show the filed potential increase after the diagonal band stimulation. It is suggested that the long-lasting facilitation of glutamate-mediated excitations might be a physiological action of the propressophysin-derived peptides in the septum-hippocampus complex which, in concert with other forms of synaptic plasticity like the long-term potentiation, facilitates the hippocampus-mediated forms of learning and memory. This action is presumably related to the memory enhancing effect of the propressophysin-derived peptides.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources