Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar 19;274(12):7603-6.
doi: 10.1074/jbc.274.12.7603.

Receptor-mediated targeting of fluorescent probes in living cells

Affiliations
Free article

Receptor-mediated targeting of fluorescent probes in living cells

J Farinas et al. J Biol Chem. .
Free article

Abstract

A strategy was developed to label specified sites in living cells with a wide selection of fluorescent or other probes and applied to study pH regulation in Golgi. cDNA transfection was used to target a single-chain antibody to a specified site such as an organelle lumen. The targeted antibody functioned as a high affinity receptor to trap cell-permeable hapten-fluorophore conjugates. Synthesized conjugates of a hapten (4-ethoxymethylene-2-phenyl-2-oxazolin-5-one, phOx) and fluorescent probes (Bodipy Fl, tetramethylrhodamine, fluorescein) were bound with high affinity (approximately 5 nM) and specific localization to the single-chain antibody expressed in the endoplasmic reticulum, Golgi, and plasma membrane of living Chinese hamster ovary cells. Using the pH-sensitive phOx-fluorescein conjugate and ratio imaging microscopy, pH was measured in the lumen of Golgi (pH 6.25 +/- 0.06). Measurements of pH-dependent vacuolar H+/ATPase pump activity and H+ leak in Golgi provided direct evidence that resting Golgi pH is determined by balanced leak-pump kinetics rather than the inability of the H+/ATPase to pump against an electrochemical gradient. Like expression of the green fluorescent protein, the receptor-mediated fluorophore targeting approach permits specific intracellular fluorescence labeling. A significant advantage of the new approach is the ability to target chemical probes with custom-designed spectral and indicator properties.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources