Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb 5;260(3):173-6.
doi: 10.1016/s0304-3940(98)00972-0.

Spinal integration of antidromic mediated cutaneous vasodilation during dorsal spinal cord stimulation in the rat

Affiliations

Spinal integration of antidromic mediated cutaneous vasodilation during dorsal spinal cord stimulation in the rat

K W Barron et al. Neurosci Lett. .

Abstract

The purpose of this study was to determine the involvement of supraspinal centers and spinal synaptic integration in cutaneous vasodilation mediated by dorsal spinal cord stimulation (DCS). Laser Doppler flowmetry was used to assess cutaneous blood flow changes in the rat hindpaw during DCS with a unipolar ball electrode placed at the L2-L3 spinal level. Results demonstrated that transecting the spinal cord at the T10 spinal segment did not alter the DCS response while T13 spinal transection abolished the DCS-induced vasodilation. Inhibition of synaptic activity with topical application of muscimol (0.2 mM) on the dorsal surface of the spinal cord markedly attenuated the DCS response. In conclusion DCS-induced vasodilation involved synaptic integration but did not require input from rostral spinal sites or supraspinal areas.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources