Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar 31;81(1):118-24.
doi: 10.1002/(sici)1097-0215(19990331)81:1<118::aid-ijc20>3.0.co;2-5.

Normoxic and hypoxic regulation of vascular endothelial growth factor (VEGF) by astrocytoma cells is mediated by Ras

Affiliations

Normoxic and hypoxic regulation of vascular endothelial growth factor (VEGF) by astrocytoma cells is mediated by Ras

M M Feldkamp et al. Int J Cancer. .

Abstract

Vascular endothelial growth Factor (VEGF) has been identified as a key angiogenic factor involved in the growth and malignant progression of tumours. Glioblastoma multiforme (GBM) are the most common primary human brain tumours, histo-pathologically characterized by intense tumour angiogenesis. GBMs do not harbour oncogenic Ras mutations, but there is a functional up-regulation of Ras signaling through activation of receptor tyrosine kinases overexpressed by these tumours. We demonstrate that Ras pathway activation regulates VEGF secretion in astrocytoma cell lines. Ras pathway inhibition was carried out using genetic and pharmacologic techniques. Astrocytoma cells that were transfected to express the dominant inhibitory mutant H-Ras(N17) demonstrated a reduction in VEGF secretion under both normoxic and hypoxic conditions. Cells treated with the farnesyl transferase inhibitor L-744,832 demonstrated similar reductions in VEGF secretion. Furthermore, astrocytoma cells expressing a constitutively phosphorylated and truncated EGF-R common in GBMs (EGFRvIII or p140(EGF-R)) demonstrate further elevations in Ras activation, resulting in a further increase in VEGF secretion. We have previously demonstrated that activation of Ras plays a vital role in transducing mitogenic signals in human malignant astrocytoma cells. Our present results further extend the role of Ras activation in modulating tumour angiogenesis in these tumours. We propose that Ras may contribute to the angiogenic switch in astrocytomas.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources