Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr;49(4):297-302.
doi: 10.1002/(SICI)1097-0282(19990405)49:4<297::AID-BIP4>3.0.CO;2-Q.

Structural consequences of D-amino acids in collagen triple-helical peptides

Affiliations

Structural consequences of D-amino acids in collagen triple-helical peptides

N K Shah et al. Biopolymers. 1999 Apr.

Abstract

The effects of racemization of aspartic acid on triple-helical formation have been studied using a "host-guest" peptide approach where selected guest Gly-Xaa-Yaa triplets were included within a common acetyl-(Gly-Pro-Hyp)3-Gly-Xaa-Yaa-(Gly-Pro-Hyp)4-Gly-Gly-amide frame-work. Four guest triplets, Gly-Asp-Hyp and Gly-Asp-Ala where Asp is either L-Asp or D-Asp were studied. Thermal stability data indicated that incorporation of D-Asp residues prevented triple-helix formation in phosphate buffered saline, although triple-helical structures were formed in a stabilizing solvent, 67% aqueous ethylene glycol. In this solvent the melting temperatures of D-Asp containing peptides were more than 30 degrees C lower than the corresponding peptides containing L-Asp. For Gly-Asp-Ala peptides, but not Gly-Asp-Hyp, peptides, melting profiles indicated that a mixture of the D- and L-Asp containing peptides were able to form heterotrimer triple-helical molecules. These studies illustrate the dramatic destabilizing effect of D-amino acids on the triple-helix stability, but indicate that they can be accommodated in this conformation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources