Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec;97(1):15-26.
doi: 10.1016/s0009-3084(98)00088-7.

Effects of PEG-lipids on permeability of phosphatidylcholine/cholesterol liposomes in buffer and in human serum

Affiliations

Effects of PEG-lipids on permeability of phosphatidylcholine/cholesterol liposomes in buffer and in human serum

M Silvander et al. Chem Phys Lipids. 1998 Dec.

Abstract

The permeability of liposomal membranes was studied as a function of the amount of incorporated PEG-lipid. The fluorescent dyes ethidium, propidium and 5(6)-carboxy fluorescein were used as markers for measurements of spontaneous leakage. The results show that addition of up to 8 mol% of PEG(2000)-DSPE into liposomal membranes of DSPC/Cho and EPC/Cho reduces the permeability of carboxyfluorescein in buffer solution. In contrast, the leakage of the more amphiphilic dye ethidium was not to any measurable extent affected by PEG-lipid inclusion. Another important difference was that ethidum leakage showed a clear dependence on temperature whereas leakage of carboxyfluorescein from pegylated liposomes did not. We conclude that the mechanisms by which the two dyes permeate the liposomal bilayer are qualitatively different. Both ethidium and carboxyfluorescein did interact with human serum components in a way that made measurements in serum unreliable. The more hydrophilic ethidium analogue propidium was shown not to interact with human serum components to any detectable extent. This made propidium suitable for permeability determinations in human serum. It was found that liposomes composed of pure EPC or EPC with 5 mol% DSPE-PEG, displayed a dramatic increase in permeability when subjected to a medium composed of 20% human serum in buffer. Addition of 40 mol% cholesterol to the EPC bilayers reduced the observed release rate in human serum substantially, whereas no stabilizing effect was observed upon PEG-lipid inclusion.

PubMed Disclaimer

Publication types

LinkOut - more resources