Probing enzyme quaternary structure by combinatorial mutagenesis and selection
- PMID: 10082372
- PMCID: PMC2144083
- DOI: 10.1002/pro.5560070810
Probing enzyme quaternary structure by combinatorial mutagenesis and selection
Abstract
Genetic selection provides an effective way to obtain active catalysts from a diverse population of protein variants. We have used this tool to investigate the role of loop sequences in determining the quaternary structure of a domain-swapped enzyme. By inserting random loops of four to seven residues into a dimeric chorismate mutase and selecting for functional variants by genetic complementation, we have obtained and characterized both monomeric and hexameric enzymes that retain considerable catalytic activity. The low percentage of active proteins recovered from these selection experiments indicates that relatively few loop sequences permit a change in quaternary structure without affecting active site structure. The results of our experiments suggest further that protein stability can be an important driving force in the evolution of oligomeric proteins.
Similar articles
-
Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.Biochemistry. 2007 Jun 12;46(23):6883-91. doi: 10.1021/bi700215x. Epub 2007 May 17. Biochemistry. 2007. PMID: 17506527
-
Protein design through systematic catalytic loop exchange in the (beta/alpha)8 fold.J Mol Biol. 2009 Apr 10;387(4):949-64. doi: 10.1016/j.jmb.2009.02.022. Epub 2009 Feb 20. J Mol Biol. 2009. PMID: 19233201
-
New enzymes from combinatorial library modules.Methods Enzymol. 2004;388:91-102. doi: 10.1016/S0076-6879(04)88009-1. Methods Enzymol. 2004. PMID: 15289064 No abstract available.
-
Combinatorial library approaches for improving soluble protein expression in Escherichia coli.Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):19-26. doi: 10.1107/S0907444905036097. Epub 2005 Dec 14. Acta Crystallogr D Biol Crystallogr. 2006. PMID: 16369090 Review.
-
Genetic selection as a tool in mechanistic enzymology and protein design.Ernst Schering Res Found Workshop. 2000;(32):253-68. doi: 10.1007/978-3-662-04042-3_9. Ernst Schering Res Found Workshop. 2000. PMID: 11077612 Review. No abstract available.
Cited by
-
Searching sequence space for protein catalysts.Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10596-601. doi: 10.1073/pnas.191159298. Epub 2001 Sep 4. Proc Natl Acad Sci U S A. 2001. PMID: 11535813 Free PMC article.
-
Design, selection, and characterization of a split chorismate mutase.Protein Sci. 2010 May;19(5):1000-10. doi: 10.1002/pro.377. Protein Sci. 2010. PMID: 20306491 Free PMC article.
-
Evolving the naturally compromised chorismate mutase from Mycobacterium tuberculosis to top performance.J Biol Chem. 2020 Dec 18;295(51):17514-17534. doi: 10.1074/jbc.RA120.014924. J Biol Chem. 2020. PMID: 33453995 Free PMC article.
-
Simultaneous optimization of enzyme activity and quaternary structure by directed evolution.Protein Sci. 2005 Aug;14(8):2103-14. doi: 10.1110/ps.051431605. Epub 2005 Jun 29. Protein Sci. 2005. PMID: 15987889 Free PMC article.
-
In Vivo Titration of Folate Pathway Enzymes.Appl Environ Microbiol. 2018 Sep 17;84(19):e01139-18. doi: 10.1128/AEM.01139-18. Print 2018 Oct 1. Appl Environ Microbiol. 2018. PMID: 30030232 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources