Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999;44(2-3):121-36.
doi: 10.1002/(SICI)1097-0029(19990115/01)44:2/3<121::AID-JEMT6>3.0.CO;2-F.

Histamine in the brain of insects: a review

Affiliations
Review

Histamine in the brain of insects: a review

D R Nässel. Microsc Res Tech. 1999.

Abstract

Histamine is the neurotransmitter of photoreceptors in insects and other arthropods. As a photoreceptor transmitter, histamine acts on ligand-gated chloride channels. Another type of histamine receptor has been indicated in the insect central nervous system by binding pharmacology. This receptor is similar to the mammalian H1 receptors, which are G-protein coupled and thus utilize a second messenger system. The distribution of histamine-immunoreactive (HAIR) neurons has been studied in a few insect species: cockroaches, locust, crickets, honey bee, blowflies, and in Drosophila. In addition to its presence in photoreceptor cells, histamine is distributed in a rather small number of neurons in the insect brain. Many of these neurons have extensive bilateral arborizations that innervate several distinct neuropil regions, notably in the protocerebrum. Some patterns of histamine distribution are seen in all the species. On the other hand, the number and morphology of neurons differ between the studied species, and several major neuropils (central body, antennal lobes, mushroom bodies) are supplied by HAIR neurons in some species, but not in others. Thus it appears that there are some species-specific functions of histamine and on others that are preserved between species. Some of the histaminergic neurons may constitute wide field inhibitory systems with functions distinct from those of neurons containing gamma-amino butyric acid (GABA). Novel data are presented for Drosophila and the cockroach Leucophaea maderae and a comparison is made with published data on other insects.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources