Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar;5(3):327-30.
doi: 10.1038/6549.

The pathogenesis of familial hypertrophic cardiomyopathy: early and evolving effects from an alpha-cardiac myosin heavy chain missense mutation

Affiliations

The pathogenesis of familial hypertrophic cardiomyopathy: early and evolving effects from an alpha-cardiac myosin heavy chain missense mutation

D Georgakopoulos et al. Nat Med. 1999 Mar.

Abstract

Familial hypertrophic cardiomyopathy (FHC) is a genetic disorder resulting from mutations in genes encoding sarcomeric proteins. This typically induces hyperdynamic ejection, impaired relaxation, delayed early filling, myocyte disarray and fibrosis, and increased chamber end-systolic stiffness. To better understand the disease pathogenesis, early (primary) abnormalities must be distinguished from evolving responses to the genetic defect. We did in vivo analysis using a mouse model of FHC with an Arg403Gln alpha-cardiac myosin heavy chain missense mutation, and used newly developed methods for assessing in situ pressure-volume relations. Hearts of young mutant mice (6 weeks old), which show no chamber morphologic or gross histologic abnormalities, had altered contraction kinetics, with considerably delayed pressure relaxation and chamber filling, yet accelerated systolic pressure rise. Older mutant mice (20 weeks old), which develop fiber disarray and fibrosis, had diastolic and systolic kinetic changes similar to if not slightly less than those of younger mice. However, the hearts of older mutant mice also showed hyperdynamic contraction, with increased end-systolic chamber stiffness, outflow tract pressure gradients and a lower cardiac index due to reduced chamber filling; all 'hallmarks' of human disease. These data provide new insights into the temporal evolution of FHC. Such data may help direct new therapeutic strategies to diminish disease progression.

PubMed Disclaimer

Comment in

Substances

LinkOut - more resources