Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar;437(4):553-61.
doi: 10.1007/s004240050817.

Activation of wild-type and deltaF508-CFTR by phosphodiesterase inhibitors through cAMP-dependent and -independent mechanisms

Affiliations

Activation of wild-type and deltaF508-CFTR by phosphodiesterase inhibitors through cAMP-dependent and -independent mechanisms

L Al-Nakkash et al. Pflugers Arch. 1999 Mar.

Abstract

The cAMP-dependent activation of the cystic fibrosis transmembrane conductance regulator (CFTR) and its modulation through inhibition of phosphodiesterases (PDE) were studied with the cell-attached patch-clamp technique in Calu-3 cells (expressing endogenous CFTR) and NIH3T3 cells [expressing either wild-type (Wt)-CFTR or DeltaF508-CFTR]. In Calu-3 cells, CFTR current was augmented by increasing concentrations of 8-(4-chlorophenylthio)-adenosine 3', 5'-cyclic monophosphate (CPT-cAMP) and reached a saturating level at >/=60 microM. Varying the forskolin concentration also modulated CFTR activity; 10 microM was maximally effective since supplemental application of 200 microM CPT-cAMP had no additional effect. Activation of CFTR by increasing the cAMP concentration occurs through an increase of the NPo (product of the number of functional channels and the open probability) since the single-channel amplitude remains unchanged. In Calu-3 and NIH3T3-Wt cells, PDE inhibitors, milrinone (100 microM), 8-cyclopentyl-1, 3-dipropylxanthine (CPX, 25 microM), and 3-isobutyl-1-methylxanthine (IBMX, 200 microM), did not enhance CFTR current initially activated with 10 microM forskolin, but each potentiated CFTR activity elicited with a submaximal forskolin concentration (e.g., 100 nM) and prolonged the deactivation of CFTR channel current upon removal of forskolin. Millimolar IBMX increased the NPo of both Wt- and DeltaF508-CFTR even under maximal cAMP stimulation. Quantitatively, these effects of millimolar IBMX on NPo approximate those of genistein, which potentiates the cAMP-dependent CFTR activity via a mechanism that does not involve increases in cellular cAMP. Thus, depending on the concentration, PDE inhibitors may affect CFTR through different mechanisms.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources