Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Mar;32(3):239-47.
doi: 10.1016/s0021-9290(98)00139-0.

The conflicting requirements of laxity and conformity in total knee replacement

Affiliations
Review

The conflicting requirements of laxity and conformity in total knee replacement

S Sathasivam et al. J Biomech. 1999 Mar.

Abstract

Bearing surfaces of total condylar knees which are designed with a high degree of conformity to produce low stresses in the polyethylene tibial insert may be overconstrained. This study determines femoral and tibial bearing surface geometries which will induce the least destructive fatigue mechanisms in the polyethylene whilst conserving the laxity of the natural knee. Sixteen knee designs were generated by varying four parameters systematically to cover the range of contemporary knee designs. The parameters were the femoral frontal radius (30 or 70 mm), the difference between the femoral and tibial frontal radii (2 or 10 mm), the tibial sagittal radius (56 or 80 mm) and the posterior-distal transition angle (-8 or -20 degrees), which is the angle at which the small posterior arc of the sagittal profile transfers to the larger distal arc. Rigid body analyses determined the anterior-posterior and rotational motions as well as the contact points during the stance phase of gait for the different designs. In addition, a damage function which accumulated the fluctuating maximum shear stresses was used to predict the susceptibility to delamination wear of the polyethylene (damage score). This study predicted that of the 16 designs, the knee with a frontal radius of 70 mm, a difference in femoral and tibial frontal radii of 2 mm, a tibial sagittal radius of 80 mm and a posterior distal transition angle of -20 degrees would satisfy the conflicting needs of both resistance to delamination wear and natural kinematics.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources