Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec;47(2-3):136-41.
doi: 10.1016/s1011-1344(98)00212-7.

Topical trans-4-aminomethylcyclohexanecarboxylic acid prevents ultraviolet radiation-induced pigmentation

Affiliations

Topical trans-4-aminomethylcyclohexanecarboxylic acid prevents ultraviolet radiation-induced pigmentation

K Maeda et al. J Photochem Photobiol B. 1998 Dec.

Abstract

We have studied the effect of a plasmin inhibitor, trans-4-aminomethylcyclohexanecarboxylic acid (trans-AMCHA), on skin pigmentation induced by ultraviolet (UV) exposure in Weiser-Maples guinea pigs. When guinea pigs are exposed to UV radiation (840 mJ cm-2), skin pigmentation is clearly observed from seven days after exposure and continued to increase to 29 days. Post-exposure applications of 2 and 3% solutions of trans-AMCHA to the exposed regions prevent or inhibit the pigmentation process. When the skin is removed and stained by the Fontana-Masson method, melanin content in the basal layer of UV-exposed epidermis is significantly reduced in the regions to which 2 and 3% trans-AMCHA solutions have been applied, compared with the vehicle control. As plasmin is known to contribute to the release of arachidonic acid (AA) and the production of prostaglandins (PGs), we have examined the effects of trans-AMCHA on AA-induced pigmentation in guinea pig skin. Topical application of trans-AMCHA causes a dose-dependent decrease in AA-induced pigmentation. These results suggest that trans-AMCHA reduces melanocyte tyrosinase activity by suppressing the production of PGs, UV-induced melanogens, through the suppression of the UV-induced increase in epidermal plasmin activity.

PubMed Disclaimer

LinkOut - more resources