Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar 15;67(5):665-71.
doi: 10.1097/00007890-199903150-00005.

Reversal of hyperglycemia in mice after subcutaneous transplantation of macroencapsulated islets

Affiliations

Reversal of hyperglycemia in mice after subcutaneous transplantation of macroencapsulated islets

K Tatarkiewicz et al. Transplantation. .

Abstract

Background: Macroencapsulated islets can reverse hyperglycemia in diabetic animals when transplanted i.p. or into the fat pad. The s.c. space is an attractive site for such transplantation because macrocapsules can be implanted with local anesthesia and be easily removed or reloaded with fresh islets.

Methods: Immunoprotective 20 microl ported devices were transplanted under the skin of Streptozocin-diabetic nude mice. Devices were loaded with 1200 rat islets in culture medium or in alginate. Empty devices were implanted for 2 weeks and then loaded with islets. Normal mice and mice with islets transplanted under the renal capsule or under the skin were used as controls. Seven weeks after transplantation, an intraperitoneal glucose tolerance test (IPGTT) was performed, followed by implant removal.

Results: Three weeks after transplantation, normal blood glucose levels were observed in all animals. Compared with those of normal controls, IPGTTs showed accelerated blood glucose clearance in mice transplanted with islets either within devices or beneath the kidney capsule. Fasted transplanted mice were hypoglycemic before glucose injection and 2 hr later. After removal of the implants, all recipient mice returned to hyperglycemia. Histological evaluation revealed viable islet cells and a network of close vascular structures outside the devices.

Conclusions: Macroencapsulated islets transplanted into the s.c. space were able to survive and regulate blood glucose levels in mice. The observed differences in glucose metabolism between normal and transplanted mice may be attributed to the site of transplantation and to the use of rat islets, which have a different set point for glucose induced insulin release.

PubMed Disclaimer

Publication types