Design of highly specific cytotoxins by using trans-splicing ribozymes
- PMID: 10097066
- PMCID: PMC22323
- DOI: 10.1073/pnas.96.7.3507
Design of highly specific cytotoxins by using trans-splicing ribozymes
Abstract
We have designed ribozymes based on a self-splicing group I intron that can trans-splice exon sequences into a chosen RNA target to create a functional chimeric mRNA and provide a highly specific trigger for gene expression. We have targeted ribozymes against the coat protein mRNA of a widespread plant pathogen, cucumber mosaic virus. The ribozymes were designed to trans-splice the coding sequence of the diphtheria toxin A chain in frame with the viral initiation codon of the target sequence. Diphtheria toxin A chain catalyzes the ADP ribosylation of elongation factor 2 and can cause the cessation of protein translation. In a Saccharomyces cerevisiae model system, ribozyme expression was shown to specifically inhibit the growth of cells expressing the virus mRNA. A point mutation at the target splice site alleviated this ribozyme-mediated toxicity. Increasing the extent of base pairing between the ribozyme and target dramatically increased specific expression of the cytotoxin and reduced illegitimate toxicity in vivo. Trans-splicing ribozymes may provide a new class of agents for engineering virus resistance and therapeutic cytotoxins.
Figures





Similar articles
-
Trans-splicing ribozymes for targeted gene delivery.J Mol Biol. 1999 Feb 5;285(5):1935-50. doi: 10.1006/jmbi.1998.2447. J Mol Biol. 1999. PMID: 9925776
-
Use of engineered ribozymes to catalyze chimeric gene assembly.Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7486-90. doi: 10.1073/pnas.93.15.7486. Proc Natl Acad Sci U S A. 1996. PMID: 8755500 Free PMC article.
-
Trans-splicing with the group I intron ribozyme from Azoarcus.RNA. 2014 Feb;20(2):202-13. doi: 10.1261/rna.041012.113. Epub 2013 Dec 16. RNA. 2014. PMID: 24344321 Free PMC article.
-
Design and Experimental Evolution of trans-Splicing Group I Intron Ribozymes.Molecules. 2017 Jan 2;22(1):75. doi: 10.3390/molecules22010075. Molecules. 2017. PMID: 28045452 Free PMC article. Review.
-
RNA as a drug target: recent patents on the catalytic activity of trans-splicing ribozymes derived from group I intron RNA.Recent Pat DNA Gene Seq. 2010 Jan;4(1):17-28. doi: 10.2174/187221510790410859. Recent Pat DNA Gene Seq. 2010. PMID: 20218956 Review.
Cited by
-
Computational prediction of efficient splice sites for trans-splicing ribozymes.RNA. 2012 Mar;18(3):590-602. doi: 10.1261/rna.029884.111. Epub 2012 Jan 24. RNA. 2012. PMID: 22274956 Free PMC article.
-
An in vivo selection method to optimize trans-splicing ribozymes.RNA. 2012 Mar;18(3):581-9. doi: 10.1261/rna.028472.111. Epub 2012 Jan 24. RNA. 2012. PMID: 22274958 Free PMC article.
-
Selections for constituting new RNA-protein interactions in catalytic RNP.Nucleic Acids Res. 2003 Jan 15;31(2):661-9. doi: 10.1093/nar/gkg140. Nucleic Acids Res. 2003. PMID: 12527775 Free PMC article.
-
Cell-Specific Targeting of Genetically Encoded Tools for Neuroscience.Annu Rev Genet. 2016 Nov 23;50:571-594. doi: 10.1146/annurev-genet-120215-035011. Epub 2016 Oct 6. Annu Rev Genet. 2016. PMID: 27732792 Free PMC article. Review.
-
Seamless cloning and gene fusion.Trends Biotechnol. 2005 Apr;23(4):199-207. doi: 10.1016/j.tibtech.2005.02.008. Trends Biotechnol. 2005. PMID: 15780712 Free PMC article. Review.
References
-
- Cech T R. Annu Rev Biochem. 1990;59:543–568. - PubMed
-
- Galloway-Salvo J L, Coetzee T, Belfort M. J Mol Biol. 1990;211:537–549. - PubMed
-
- Sullenger B A, Cech T R. Nature (London) 1994;371:619–622. - PubMed
-
- Jones J T, Lee S W, Sullenger B A. Nat Med. 1996;2:643–648. - PubMed
-
- Sarver N, Cairns S. Nat Med. 1996;2:641–642. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources