Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec;29(6):573-9.
doi: 10.1080/10715769800300611.

Age-associated change in mitochondrial DNA damage

Affiliations

Age-associated change in mitochondrial DNA damage

E K Hudson et al. Free Radic Res. 1998 Dec.

Abstract

There is an age-associated decline in the mitochondrial function of the Wistar rat heart. Previous reports from this lab have shown a decrease in mitochondrial cytochrome c oxidase (COX) activity associated with a reduction in COX gene and protein expression and a similar decrease in the rate of mitochondrial protein synthesis. Damage to mitochondrial DNA may contribute to this decline. Using the HPLC-Coularray system (ESA, USA), we measured levels of nuclear and mitochondrial 8-oxo-2'-deoxyguanosine (8-oxodG) from 6-month (young) and 23-month-old (senescent) rat liver DNA. We measured the sensitivity of the technique by damaging calf thymus DNA with photoactivated methylene blue for 30s up to 2h. The levels of damage were linear over the entire time course including the shorter times which showed levels comparable to those expected in liver. For the liver data, 8-oxodG was reported as a fraction of 2-deoxyguanosine (2-dG). There was no change in the levels of 8-oxodG levels in the nuclear DNA from 6 to 23-months of age. However, the levels of 8-oxodG increased 2.5-fold in the mitochondrial DNA with age. At 6 months, the level of 8-oxodG in mtDNA was 5-fold higher than nuclear and increased to approximately 12-fold higher by 23 months of age. These findings agree with other reports showing an age-associated increase in levels of mtDNA damage; however, the degree to which it increases is smaller. Such damage to the mitochondrial DNA may contribute to the age-associated decline in mitochondrial function.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources