Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Apr;140(4):1687-94.
doi: 10.1210/endo.140.4.6643.

Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion

Affiliations
Comparative Study

Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion

A S Rocca et al. Endocrinology. 1999 Apr.

Abstract

Plasma levels of glucagon-like peptide-1 (GLP-1) rise rapidly after nutrient ingestion, suggesting the existence of a proximal gut signal regulating GLP-1 release from the L cells of the distal small intestine. Glucose-dependent insulinotropic peptide (GIP) has been shown to be one such proximal signal; however, the dependence of GIP on gastrin-releasing peptide, a neuromodulator, suggested a role for the nervous system in this proximal-distal loop. Investigations into the nature of this proximal signal were therefore conducted in an in situ model of the rat gastrointestinal system. Infusions of corn oil into a 10-cm segment of duodenum that was isolated by loose ligation (to ensure that the luminal contents did not progress to the ileal L cell) increased the secretion of GLP-1 in parallel with that of gut glucagon-like immunoreactivity (gGLI; r = 0.85; P < 0.05). Infusion of fat into a transected segment of duodenum also significantly raised gGLI secretion compared with saline infusion, reaching a peak value of 132 +/- 37 pg/ml above basal (P < 0.05). However, peak secretion was significantly delayed when the gut was transected compared with that after ligation alone (19 +/- 4 vs. 6 +/- 1 min, respectively; P < 0.05). Furthermore, bilateral subdiaphragmatic vagotomy in conjunction with gut transection completely abolished the fat-induced rise in gGLI secretion (P < 0.001). Consistent with a role for the vagus in the regulation of the L cell, stimulation of the distal end of the celiac branch of the subdiaphragmatic vagus nerve significantly stimulated the secretion of gGLI to a level of 71 +/- 14 pg/ml above basal (P < 0.05). As found previously, supraphysiological infusion of GIP significantly increased gGLI secretion in control animals by 123 +/- 32 pg/ml (P < 0.05); this was not prevented by hepatic branch vagotomy (96 +/- 25 pg/ml; P < 0.05). In contrast, although infusion of GIP at physiological levels into sham-vagotomized animals also increased gGLI secretion, by 40 +/- 6 pg/ml (P < 0.05), selective hepatic branch vagotomy abolished GIP-induced gGLI secretion (P < 0.05). The results of these experiments therefore demonstrate that the secretion of GLP-1 and gGLI from the ileal L cell in response to fat is regulated by a complex neuroendocrine loop, involving the enteric nervous system, the afferent and efferent vagus nerves, as well as the duodenal hormone GIP.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms