Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Feb;45(1):1-14.

Seizure-related opening of the blood-brain barrier produced by the anticholinesterase compound, soman: new ultrastructural observations

Affiliations
  • PMID: 10099835
Comparative Study

Seizure-related opening of the blood-brain barrier produced by the anticholinesterase compound, soman: new ultrastructural observations

V Grange-Messent et al. Cell Mol Biol (Noisy-le-grand). 1999 Feb.

Abstract

Previous macroscopic and light microscopic observations established that the organophosphate soman, an irreversible inhibitor of cholinesterases, produces seizure-related opening of the blood-brain barrier (BBB) to proteins. In Wistar rats, this BBB alteration was found to be reversible. This alteration was greatest during the first hour of seizures, and was topographically limited to sensitive areas such as the thalamus. In contrast, the hippocampus remained free of any vascular leakage. The present study is an attempt to elucidate, in rat thalamus, the subcellular mechanisms involved in soman-induced BBB alteration. A combination of three ultrastructural approaches was used: examination of ultra-thin sections, freeze-fracture, and post-embedding protein A-gold immunocytochemistry of the endogenous, normally exclusively blood-borne, albumin. Our findings show that soman-induced seizure activity produced no discernible structural change in the endothelial tight junctions, whereas it unambiguously increased the number of endothelial vesicles. Finally, immunolabelled albumin clearly crossed the endothelium, but was not systematically found inside the endothelial vesicles. Altogether, the present ultrastructural study confirms that soman can alter the integrity of the BBB, and demonstrates that the blood-to-brain passage of proteins does not mainly derive from the opening of tight junctions. Although transcytosis is clearly increased through the cerebral endothelium, there is little evidence that blood-borne proteins penetrate the brain in this way. The actual mechanisms of transport thus remain to be clarified.

PubMed Disclaimer

Publication types

LinkOut - more resources