Intracranial delivery of recombinant nerve growth factor: release kinetics and protein distribution for three delivery systems
- PMID: 10100308
- DOI: 10.1023/a:1018824324275
Intracranial delivery of recombinant nerve growth factor: release kinetics and protein distribution for three delivery systems
Abstract
Purpose: Three different polymeric delivery systems, composed of either poly(ethylene-co-vinyl acetate) (EVAc) or poly(lactide-co-glycolide) (PLGA), were used to administer recombinant human nerve growth factor (rhNGF) intracranially in rats.
Methods: The delivery systems were characterized with respect to release kinetics, both in the brain and in well-stirred buffer solutions.
Results: During incubation in buffered saline, the delivery systems released rhNGF in distinct patterns: sustained (EVAc), immediate (PLGA1) and delayed (PLGA2). One 10-mg delivery system was implanted in each rat and an ELISA technique was used to determine the amount of rhNGF in 1-mm coronal brain slices produced immediately after removal of the delivery system. High levels of rhNGF (as high as 60,000 ng in a brain slice of approximately 50 microliters) were recovered from the brain tissue at 1, 2, and 4 weeks after implantation. With all three delivery systems, the amount of rhNGF in each brain slice decreased exponentially with distance from the implant site: the distance over which concentration decreased by 10-fold was 2-3 mm for all delivery systems. When rhNGF release was moderate (10 to 200 ng rhNGF/day), the total amount of rhNGF in the brain increased linearly with release rate, suggesting an overall rate of rhNGF elimination of 0.4 hr-1 or a half-life of 1.7 hr. With higher release rates (500 to 50,000 ng rhNGF/day), total amounts of rhNGF in the brain were considerably higher than anticipated based on this rate of elimination.
Conclusions: Polymeric controlled release can provide high, localized doses of rhNGF in the brain. All of the experimental data were consistent with penetration of rhNGF through the brain tissue with a diffusion coefficient approximately 8 x 10(-7) cm2/s, which is approximately 50% of the diffusion coefficient in water.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources