Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr 2;84(6):735-40.
doi: 10.1161/01.res.84.6.735.

Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure

Affiliations
Free article

Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure

T Meguro et al. Circ Res. .
Free article

Abstract

Left ventricular hypertrophy (LVH) is a compensatory mechanism to cope with pressure overload. Recently, a calcineurin pathway mediating LVH and its prevention by cyclosporine was reported. We examined whether calcineurin mediates LVH due to pressure overload in mice. Pressure overload was induced by aortic banding in 53 mice (32 treated with cyclosporine [25 mg. kg-1. d-1], 21 treated with vehicle). There were 17 sham-operated mice (9 treated with vehicle, 8 treated with cyclosporine). At 3 weeks after surgery, LV weight to body weight was greater in the nontreatment banded group (4.39+/-0. 16 mg/g) than in the cyclosporine-treated banded group (3.95+/-0.14 mg/g, P<0.05), with both groups being greater compared with the entire group of sham-operated mice (3.02+/-0.04 mg/g). The pressure gradient between the ascending and abdominal aorta was not different between the cyclosporine-treated (49.6+/-6.1 mm Hg) and nontreatment groups (48.7+/-4.6 mm Hg). Although LV systolic pressure was lower in the cyclosporine-treated banded animals, LV systolic wall stress was similar in the nontreatment banded group and in the cyclosporine-treated group. However, LV dP/dt was lower (P=0.05) in the cyclosporine-treated banded group (4774+/-656 mm Hg/s) than in the nontreatment banded group (6604+/-516 mm Hg/s). During the protocol, 23 of 32 mice in the cyclosporine-treated group and 9 of 21 mice in the nontreatment group died. All deaths occurred within 10 days after surgery. Deaths caused by heart failure were 7.2-fold higher (P<0.05) in the cyclosporine-treated group, whereas deaths due to other causes were not different between the 2 groups. In addition, LV function of mice was assessed at 48 hours after banding; LV ejection fraction measured with echocardiography was lower (P<0.05) in the cyclosporine-treated banded group (66+/-3.0%) than in the nontreatment banded group (79+/-1.5%), whereas LV systolic wall stresses were similar. Calcineurin phosphatase activity was depressed similarly in both cyclosporine-treated groups compared with both nontreatment groups. Thus, cyclosporine could attenuate, but not prevent, LVH at the expense of inhibiting an important compensatory mechanism in response to pressure overload, resulting in reduced LV wall stress and function and increased susceptibility to decompensation and heart failure.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources