Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr;66(4):234-9.
doi: 10.1006/mgme.1999.2803.

Genotype-phenotype correlations in neuronal ceroid lipofuscinosis due to palmitoyl-protein thioesterase deficiency

Affiliations

Genotype-phenotype correlations in neuronal ceroid lipofuscinosis due to palmitoyl-protein thioesterase deficiency

S L Hofmann et al. Mol Genet Metab. 1999 Apr.

Abstract

The infantile form of neuronal ceroid lipofuscinosis (NCL) has been well studied in Finland, where there is a high carrier frequency (1:70) for a single mutation in the causative gene, CLN1, or PPT. We have recently studied a group of 29 NCL subjects in the United States with palmitoyl-protein thioesterase (PPT) deficiency and described 19 different CLN1/PPT mutations in our population. In this report, we present a review of our previous findings, including a more detailed analysis of phenotype-genotype correlations, and present previously unpublished data concerning the clinical manifestations of the disorder in children of families with multiple affected members. Our studies indicate that about half of PPT-deficient patients in the United States are very similar to Finnish infants with INCL, but that a different mutation (R151X) accounts for 40% of U.S. alleles. The Finnish mutation (R122W) is rare in the United States. The other half of U.S. PPT-deficient patients develop symptoms after the age of 2 years, much later than Finnish patients. One common mutation (the "Scottish" allele, T75P) accounts for 13% of alleles and results in a juvenile-onset phenotype that is clinically indistinguishable from JNCL with CLN3 mutations. Other rare mutations were also associated with JNCL phenotypes, such as D79G and G250V. A preliminary expression study of two of these mutant enzymes supports the conclusion that juvenile-onset NCL (JNCL with GROD) is caused by missense mutations in the PPT gene that result in mutated enzymes with residual PPT enzyme activity.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources