Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999;20(3):194-201.
doi: 10.1002/(sici)1521-186x(1999)20:3<194::aid-bem6>3.0.co;2-0.

Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells

Affiliations

Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells

M Bier et al. Bioelectromagnetics. 1999.

Abstract

Permeabilization of the plasma membrane by electrical forces (electroporation) can be either transient or stable. Although the exact molecular mechanics have not yet been described, electroporation is believed to initiate primarily in the lipid bilayer. To better understand the kinetics of membrane permeabilization, we sought to determine the time constants for spontaneous transient pore sealing. By using isolated rat flexor digitorum brevis skeletal muscle cells and a two-compartment diffusion model, we found that pore sealing times (tau p) after transient electroporation were approximately 9 min. tau p was not significantly dependent on the imposed transmembrane potential. We also determined the transmembrane potential (delta Vm) thresholds necessary for transient and stable electroporation in the skeletal muscle cells. delta VmS ranging between 340 mV and 480 mV caused a transient influx of magnesium, indicating the existence of spontaneously sealing pores. An imposed delta Vm of 540 mV or greater led to complete equilibration of the intracellular and extracellular magnesium concentrations. This finding suggests that stable pores are created by the larger imposed transmembrane potentials. These results may be useful for understanding nerve and skeletal muscle injury after an electrical shock and for developing optimal strategies for accomplishing transient electroporation, particularly for gene transfection and cell transformation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources