Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Dec;4(6):439-53.

Chymase: its pathophysiological roles and inhibitors

Affiliations
  • PMID: 10197055
Review

Chymase: its pathophysiological roles and inhibitors

H Fukami et al. Curr Pharm Des. 1998 Dec.

Abstract

Chymase is a chymotrypsin-type serine protease mainly localized in mast cells (MCs). Human, primate, and dog chymase generate angiotensin II (Ang II) from Ang I, while mouse and rat chymases degrade Ang II. It is suggested that chymase generating Ang II might be an alternative Ang II-forming enzyme to angiotensin-converting enzyme (ACE) in the renin-angiotensin system in tissues, but not in blood, and cause hypertrophy and remodeling of cardiovascular tissues. Chymase also degrades extracellular matrix, and processes procollagenase, inflammatory cytokines and other bioactive peptides. As a result, chymase plays important roles in inflammatory tissues through its proteolytic activities to cause tissue remodeling, that is, a chymase inhibitor may have the ability to prevent diseases caused by the above inflammatory reactions. The investigation of chymase inhibitors by pharmaceutical companies has yielded peptide and peptide mimetic inhibitors. We also found potent non-peptide low molecular inhibitors. However, the in vivo functions of chymase have not been verified so far by applying a chymase inhibitor to in vivo pathological models. In this article, we overview the pathophysiological roles of chymase and chymase inhibitors proposed to date, and discuss the structure-activity relationships of substituted 3-phenylsulfonyl-1-phenylimidazolidine-2,4-dione derivatives.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources