Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr;276(4):H1369-78.
doi: 10.1152/ajpheart.1999.276.4.H1369.

COX-2 and cytosolic PLA2 mediate IL-1beta-induced cAMP production in human vascular smooth muscle cells

Affiliations

COX-2 and cytosolic PLA2 mediate IL-1beta-induced cAMP production in human vascular smooth muscle cells

D Beasley. Am J Physiol. 1999 Apr.

Abstract

Interleukin (IL)-1 is a potent vasodilator that causes prolonged induction of prostacyclin (PGI2) and cAMP synthesis in human vascular smooth muscle cells (HVSMC). The present study investigated IL-1 induction of PG synthetic enzymes in HVSMC and tested their respective roles in PGI2 and cAMP production. Cyclooxygenase (COX)-1 mRNA was not detectable in either control or IL-1-treated HVSMC, as assessed by RT-PCR. In contrast, COX-2 mRNA was detectable in control HVSMC, increased markedly (16-fold) after 1 h of IL-1 exposure, and increased further (52-fold) after 24 h. COX-2 protein levels, assessed by Western analysis, were increased concomitantly. HVSMC contained mRNA encoding both the secreted and cytosolic forms of phospholipase A2 (sPLA2 and cPLA2, respectively). IL-1 stimulation did not affect sPLA2 mRNA levels, but cPLA2 mRNA levels increased at 8 h, after the initial induction of PG synthesis. HVSMC constitutively expressed PGI2 synthase mRNA, and its levels were not affected by IL-1. A selective COX-2 inhibitor, NS-398, reversed IL-1-induced PGI2 and cAMP production, supporting a role of COX-2 in mediating increased PG synthesis. IL-1-induced cAMP was also reversed by a selective cPLA2 inhibitor, AACOCF3, but not by thioetheramide phosphorylcholine, which inhibits sPLA2 preferentially over cPLA2, supporting a requirement for cPLA2-derived arachidonic acid in IL-1-induced PG synthesis. The delayed induction of cPLA2 mRNA was also attenuated by NS-398, suggesting that it was secondary to the initial COX-2-induced PG synthesis. Together, the results support the hypothesis that IL-1 induces intracellular PG synthesis in HVSMC via rapid upregulation of COX-2, which utilizes cPLA2-derived arachidonic acid to generate PG metabolites that regulate adenylate cyclase.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources