Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr 13;38(15):4834-45.
doi: 10.1021/bi982986j.

Mutation of an active site residue in Escherichia coli uracil-DNA glycosylase: effect on DNA binding, uracil inhibition and catalysis

Affiliations

Mutation of an active site residue in Escherichia coli uracil-DNA glycosylase: effect on DNA binding, uracil inhibition and catalysis

M J Shroyer et al. Biochemistry. .

Abstract

The role of the conserved histidine-187 located in the leucine intercalation loop of Escherichia coli uracil-DNA glycosylase (Ung) was investigated. Using site-directed mutagenesis, an Ung H187D mutant protein was created, overproduced, purified to apparent homogeneity, and characterized in comparison to wild-type Ung. The properties of Ung H187D differed from Ung with respect to specific activity, substrate specificity, DNA binding, pH optimum, and inhibition by uracil analogues. Ung H187D exhibited a 55000-fold lower specific activity and a shift in pH optimum from pH 8.0 to 7.0. Under reaction conditions optimal for wild-type Ung (pH 8.0), the substrate preference of Ung H187D on defined single- and double-stranded oligonucleotides (25-mers) containing a site-specific uracil target was U/G-25-mer > U-25-mer > U/A-25-mer. However, Ung H187D processed these same DNA substrates at comparable rates at pH 7.0 and the activity was stimulated approximately 3-fold relative to the U-25-mer substrate. Ung H187D was less susceptible than Ung to inhibition by uracil, 6-amino uracil, and 5-fluorouracil. Using UV-catalyzed protein/DNA cross-linking to measure DNA binding affinity, the efficiency of Ung H187D binding to thymine-, uracil-, and apyrimidinic-site-containing DNA was (dT20) = (dT19-U) >/= (dT19-AP). Comparative analysis of the biochemical properties and the X-ray crystallographic structures of Ung and Ung H187D [Putnam, C. D., Shroyer, M. J. N., Lundquist, A. J., Mol, C. D., Arvai, A. S., Mosbaugh, D. W., and Tainer, J. A. (1999) J. Mol. Biol. 287, 331-346] provided insight regarding the role of His-187 in the catalytic mechanism of glycosylic bond cleavage. A novel mechanism is proposed wherein the developing negative charge on the uracil ring and concomitant polarization of the N1-C1' bond is sustained by resonance effects and hydrogen bonding involving the imidazole side chain of His-187.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources