Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Apr;5(4):251-61.
doi: 10.1038/sj.cdd.4400351.

Analysis of nuclear degradation during lens cell differentiation

Affiliations
Review

Analysis of nuclear degradation during lens cell differentiation

M F Counis et al. Cell Death Differ. 1998 Apr.

Abstract

Lens cells demonstrate a terminal differentiation process with loss of their organelles including nuclei. Chromatin disappearance is characterised by the same changes as most apoptotic cells, i.e. condensation of chromatin and cleavage into high molecular weight fragments and oligonucleosomes. The endo-deoxyribonucleases (bicationic (Ca2+, Mg2+), mono-cationic (Ca2+ or Mg2+) and acidic non-cationic dependent nucleases) are present in lens fibre cells. Our results suggest that the acidic non-cationic nuclease (DNase II) plays a major role in chromatin cleavage. This nuclease, known to be lysosomal, is found in lens fibre nuclei and only an antibody directed against DNase II inhibits the acidic DNA cleavage of lens fibre nuclei. In addition, there must be another DNase implicated in the process which is not DNase I but appears to be a Ca2+, Mg2+ dependent molecule. Regulation of these DNase activities may be accomplished by the effect of post-translational modifications, acidic pH, mitochondrial release molecules, growth factors or oncogenes. Finally, fibre cells lose organelles without cytoplasmic elimination. The survival of these differentiated cells might be due to the action of survival factors such as FGF 1.

PubMed Disclaimer

Publication types

LinkOut - more resources