Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr;103(8):1169-78.
doi: 10.1172/JCI5017.

Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria

Affiliations

Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria

J Pietz et al. J Clin Invest. 1999 Apr.

Abstract

Large neutral amino acids (LNAAs), including phenylalanine (Phe), compete for transport across the blood-brain barrier (BBB) via the L-type amino acid carrier. Accordingly, elevated plasma Phe impairs brain uptake of other LNAAs in patients with phenylketonuria (PKU). Direct effects of elevated brain Phe and depleted LNAAs are probably major causes for disturbed brain development and function in PKU. Competition for the carrier might conversely be put to use to lower Phe influx when the plasma concentrations of all other LNAAs are increased. This hypothesis was tested by measuring brain Phe in patients with PKU by quantitative 1H magnetic resonance spectroscopy during an oral Phe challenge with and without additional supplementation with all other LNAAs. Baseline plasma Phe was approximately 1,000 micromol/l and brain Phe was approximately 250 micromol/l in both series. Without LNAA supplementation, brain Phe increased to approximately 400 micromol/l after the oral Phe load. Electroencephalogram (EEG) spectral analysis revealed acutely disturbed brain activity. With concurrent LNAA supplementation, Phe influx was completely blocked and there was no slowing of EEG activity. These results are relevant for further characterization of the LNAA carrier and of the pathophysiology underlying brain dysfunction in PKU and for treatment of patients with PKU, as brain function might be improved by continued LNAA supplementation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Study design. In the Pheonly series (left), plasma concentrations of Phe and the other LNAAs were determined during an oral Phe load. Brain tissue concentrations of Phe were measured with in vivo 1H-MRS. Brain activity was monitored using spectral analysis of EEG activity. In the Phe+LNAA series (right), this experiment was supplemented by LNAA treatment with 5 × 30 mg/kg body weight.
Figure 2
Figure 2
Downfield portion of the 1H-MR spectrum. (a) Spectrum of a 26-year-old patient with PKU. (b) The averaged spectrum of 10 healthy age-matched subjects, and (c) the corresponding spectrum of an aqueous solution of Phe. The right side illustrates the model-fitting procedure used. Spectrum (d) contains the best-fitting model for spectrum a, which is composed of a parameterized spectrum of normal background and residual water signals (e) as well as the parameterized spectrum of Phe (f). Trace (g) contains the residuals of the best fit (i.e., ad) for this case.
Figure 3
Figure 3
Time course of plasma and brain Phe and examples for LNAAs. (a) Steep increase of plasma Phe levels after an oral dose of L-Phe (time 0 h) in the Pheonly (dotted line) and Phe+LNAA series (solid line). (b) Plasma concentrations of valine and (c) tryptophan are given as examples of LNAA increase during LNAA supplementation in the Phe+LNAA series (solid line), compared with the Pheonly series (dotted line). (d) Km-corrected Phe/LNAA ratio versus time after load. During Pheonly, this ratio increased because of the increase in plasma Phe; it decreased during LNAA treatment. (e) Brain Phe concentrations as determined by in vivo 1H-MRS demonstrating a continuous increase during Pheonly and a block of Phe influx during LNAA treatment. (f) The ratio of plasma/brain Phe increased much more with LNAA treatment than without. All curves represent the average values from all six patients.
Figure 4
Figure 4
Averaged 1H-MRS difference spectra (patients minus averaged normal spectra), acquired in vivo before as well as 6, 12, and 24 h after the oral Phe load. The increase of the Phe peak at 7.37 ppm during the Pheonly series (dotted line) contrasts with the unchanged Phe peak 6 and 12 h postload in the Phe+LNAA series (solid line). When LNAA treatment was stopped, brain Phe also increased in this series (measurement at 24 h).
Figure 5
Figure 5
Averaged EEG power spectra from patients with PKU. During the Pheonly series (dotted line), a shift of the dominant peak of EEG background activity to the lower-frequency spectrum is demonstrated, which was prevented by LNAA treatment (solid line).

Similar articles

Cited by

References

    1. Krause W, Epstein C, Averbook A, Dembure P, Elsas L. Phenylalanine alters the mean power frequency of electroencephalograms and plasma L-DOPA in treated patients with phenylketonuria. Pediatr Res. 1986;20:1112–1116. - PubMed
    1. Krause W, et al. Biochemical and neuropsychological effects of elevated plasma phenylalanine in patients with treated phenylketonuria. A model for the study of phenylalanine and brain function in man. J Clin Invest. 1985;75:40–48. - PMC - PubMed
    1. Pietz J, et al. EEGs in phenylketonuria. I. Follow-up to adulthood. II. Short-term diet-related changes in EEGs and cognitive function. Dev Med Child Neurol. 1993;35:54–64. - PubMed
    1. Lou HC. Large doses of tryptophan and tyrosine as potential therapeutic alternative to dietary phenylalanine restriction in phenylketonuria [letter] Lancet. 1985;2:150–151. - PubMed
    1. Berry HK, Brunner RL, Hunt MM, White PP. Valine, isoleucine and leucine. A new treatment for phenylketonuria. Am J Dis Child. 1990;144:539–543. - PubMed

Publication types