Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Apr 20;99(15):2027-33.
doi: 10.1161/01.cir.99.15.2027.

Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system

Affiliations
Comparative Study

Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system

A Warnholtz et al. Circulation. .

Abstract

Background: Angiotensin II activates NAD(P)H-dependent oxidases via AT1-receptor stimulation, the most important vascular source of superoxide (O2*-). The AT1 receptor is upregulated in vitro by low-density lipoprotein. The present study was designed to test whether hypercholesterolemia is associated with increased NAD(P)H-dependent vascular O2*- production and whether AT1-receptor blockade may inhibit this oxidase and in parallel improve endothelial dysfunction.

Methods and results: Vascular responses were determined by isometric tension studies, and relative rates of vascular O2*- production were determined by use of chemiluminescence with lucigenin, a cypridina luciferin analogue, and electron spin resonance studies. AT1-receptor mRNA was quantified by Northern analysis, and AT1-receptor density was measured by radioligand binding assays. Hypercholesterolemia was associated with impaired endothelium-dependent vasodilation and increased O2*- production in intact vessels. In vessel homogenates, we found a significant activation of NADH-driven O2*- production in both models of hyperlipidemia. Treatment of cholesterol-fed animals with the AT1-receptor antagonist Bay 10-6734 improved endothelial dysfunction, normalized vascular O2*- and NADH-oxidase activity, decreased macrophage infiltration, and reduced early plaque formation. In the setting of hypercholesterolemia, the aortic AT1 receptor mRNA was upregulated to 166+/-11%, accompanied by a comparable increase in AT1-receptor density.

Conclusions: Hypercholesterolemia is associated with AT1-receptor upregulation, endothelial dysfunction, and increased NADH-dependent vascular O2*- production. The improvement of endothelial dysfunction, inhibition of the oxidase, and reduction of early plaque formation by an AT1-receptor antagonist suggests a crucial role of angiotensin II-mediated O2*- production in the early stage of atherosclerosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances