Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr;121(2):253-8.
doi: 10.1115/1.2835112.

Results from demineralized bone creep tests suggest that collagen is responsible for the creep behavior of bone

Affiliations

Results from demineralized bone creep tests suggest that collagen is responsible for the creep behavior of bone

S M Bowman et al. J Biomech Eng. 1999 Apr.

Abstract

Cortical and trabecular bone have similar creep behaviors that have been described by power-law relationships, with increases in temperature resulting in faster creep damage accumulation according to the usual Arrhenius (damage rate approximately exp (-Temp.-1)) relationship. In an attempt to determine the phase (collagen or hydroxyapatite) responsible for these similar creep behaviors, we investigated the creep behavior of demineralized cortical bone, recognizing that the organic (i.e., demineralized) matrix of both cortical and trabecular bone is composed primarily of type I collagen. We prepared waisted specimens of bovine cortical bone and demineralized them according to an established protocol. Creep tests were conducted on 18 specimens at various normalized stresses sigma/E0 and temperatures using a noninvasive optical technique to measure strain. Denaturation tests were also conducted to investigate the effect of temperature on the structure of demineralized bone. The creep behavior was characterized by the three classical stages of decreasing, constant, and increasing creep rates at all applied normalized stresses and temperatures. Strong (r2 > 0.79) and significant (p < 0.01) power-law relationships were found between the damage accumulation parameters (steady-state creep rate d epsilon/dt and time-to-failure tf) and the applied normalized stress sigma/E0. The creep behavior was also a function of temperature, following an Arrhenius creep relationship with an activation energy Q = 113 kJ/mole, within the range of activation energies for cortical (44 kJ/mole) and trabecular (136 kJ/mole) bone. The denaturation behavior was characterized by axial shrinkage at temperatures greater than approximately 56 degrees C. Lastly an analysis of covariance (ANCOVA) of our demineralized cortical bone regressions with those found in the literature for cortical and trabecular bone indicates than all three tissues creep with the same power-law exponents. These similar creep activation energies and exponents suggest that collagen is the phase responsible for creep in bone.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources