Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr 17;825(1-2):146-51.
doi: 10.1016/s0006-8993(99)01159-2.

5-HT2C receptor involvement in female rat lordosis behavior

Affiliations

5-HT2C receptor involvement in female rat lordosis behavior

A Wolf et al. Brain Res. .

Abstract

Adult, hormone-primed, ovariectomized rats (CDF-344) with bilateral implants within the ventromedial nucleus of the hypothalamus (VMN), were injected with 0.5 microgram estradiol benzoate followed 48 h later with 500 microgram progesterone. This priming produced rats with 2 different levels of sexual receptivity. Rats with a lordosis to mount ratio (L/M)>/=0.5 were used to examine the potential lordosis-inhibiting effects of the 5-HT2A receptor antagonist, R(+)-a-(2, 3-dimethoxyphenyl)-1-[2(4-fluoro-phenylethyl)]-4-piperidine-methanol (MDL 100,907), and the 5-HT2C receptor antagonist, 5-methyl-1-(3-pyridylcarbamoyl)-1,2,3,5-tetrahydropyrrolo[2, 3-f]indole (SB 206553). Rats with low sexual receptivity (L/M<0.5) were bilaterally infused with the 5-HT2A/2C receptor agonist, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI), or DOI plus either MDL 100,907 or SB 206553 to determine if either drug would attenuate the lordosis-facilitating effects of DOI. The 5-HT2C receptor antagonist, but not the 5-HT2A receptor antagonist, effectively inhibited lordosis behavior. Similarly, SB 206553 was more effective than MDL 100,907 in reducing the DOI-induced increase in lordosis responding. However, both drugs limited the duration of lordosis responding initiated by DOI. These results are consistent with prior suggestions that 5-HT2A/2C receptors within the VMN are involved in the modulation of lordosis behavior and lead to the suggestion that 5-HT2C, rather than 5-HT2A, receptors are primarily responsible for the effects of 5-HT2 receptor-active drugs on lordosis behavior.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources