Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb;17(1):21-30.
doi: 10.1016/s0736-5748(98)00054-9.

Fetuin in neurons of the retina and cerebellum during fetal and postnatal development of the rat

Affiliations

Fetuin in neurons of the retina and cerebellum during fetal and postnatal development of the rat

P D Kitchener et al. Int J Dev Neurosci. 1999 Feb.

Abstract

Although long known to be a liver-derived fetal plasma glycoprotein, fetuin has more recently been shown to be present in sub-populations of neurons in the developing nervous system of a number of mammalian species. We have extended these observations to examine the fetuin immunoreactivity (IR) in developing rat retina and cerebellum. Fetuin-IR was first seen in the retina on embryonic day (E)19 in a sub-population of cells in the retinal ganglion cell layer and a small proportion of cells in the neuroblastic layer. The proportion of cells in the ganglion layer exhibiting fetuin-IR increased until postnatal day (P)10 when all cells in this layer were strongly immunoreactive. From P14 onwards fetuin-IR was absent or very weak and restricted to a small proportion of ganglion cells. In the developing cerebellum, the outer and inner granule cell layers, the deep nuclei and cells in the sub-cortical white matter exhibited fetuin-IR from E19 to P10. There was little fetuin-IR in the cerebellum at ages P14 and older, and Purkinje cells did not exhibit fetuin-IR at any time. The results show that fetuin appears in many neurons in the retina and cerebellum that are differentiating during the period from E19 to P10. The concentration of fetuin in cerebrospinal fluid is at its highest in this same period which suggests that some sub-populations of neurons could obtain fetuin from extracellular fluid during this period; however, the lack of fetuin-IR in other neuronal populations suggests that fetuin uptake is not a general property of developing neurons.

PubMed Disclaimer

Publication types

LinkOut - more resources